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Abstract We consider the problem of minimizing costs in the generation unit com-
mitment problem, a cornerstone in electric power system operations, while enforcing
an N-k-ε reliability criterion. This reliability criterion is a generalization of the well-
known N-k criterion and dictates that at least (1− ε) fraction of the total system de-
mand must be met following the failure of k or fewer system components. We refer to
this problem as the Contingency-Constrained Unit Commitment problem, or CCUC.
We present a mixed-integer programming formulation of the CCUC that accounts for
both transmission and generation element failures. We propose novel cutting plane
algorithms that avoid the need to explicitly consider an exponential number of con-
tingencies. Computational studies are performed on several IEEE test systems and a
simplified model of the Western US interconnection network. These studies demon-
strate the effectiveness of our proposed methods relative to current state-of-the-art.

Keywords Integer programming · Bi-level programming · Benders decomposition ·
Unit commitment · Contingency constraints

1 Introduction

Power system operations aim to optimally utilize available electricity generation re-
sources to satisfy projected demand, at minimal cost, subject to various physical gen-
eration and transmission constraints, and operational security constraints. Tradition-
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ally, such operations involve numerous sub-tasks, including short-term load forecast-
ing, unit commitment, economic dispatch, voltage and frequency control, and inter-
change scheduling between distinct electricity grid operators. Most recently, renew-
able generation units in the form of geographically distributed wind and solar farms
have imposed the additional requirement to consider uncertain generation output, in-
creasingly in conjunction with the deployment of advanced storage technologies such
as pumped hydro. Growth in system size and the introduction of significant genera-
tion output uncertainty contribute to increased concerns regarding system vulnerabil-
ity. Large-scale blackouts, such as the Northeast blackout of 2003 in North America
and, more recently, the blackout of July 2012 in India, impact millions of people
and result in significant economic costs. Similarly, failure to accurately account for
renewables output uncertainty can lead to large-scale forced outages, as in the case
of ERCOT (a major electricity grid operator in Texas) on February 26, 2008. Such
events have led to an increased focus on power systems reliability, with the goal of
mitigating against failures due to both natural causes and intelligent adversaries.

Optimization methods have been applied to power system operations problems
for several decades; Wood and Wollenberg [30] provide a brief overview. The cou-
pling of state-of-the-art implementations of core optimization algorithms (including
simplex, barrier, and mixed-integer branch-and-cut algorithms) and current comput-
ing capabilities (e.g., inexpensive multi-core processors) enable optimal decision-
making in real power systems. One notable example involves the unit commitment
problem, which is used to determine the day-ahead schedule for all generators in a
given operating region of an electricity grid. A solution to the unit commitment prob-
lem specifies, for each hour in the scheduling horizon (typically 24 or 48 hours), both
the set of generators that are to be operating and their corresponding projected power
output levels. The solution must satisfy a large number of generator (e.g., ramp rates,
minimum up and down times, and capacity limits) and transmission (e.g., power flow
and thermal limit) constraints, achieving a minimal total production cost while sat-
isfying forecasted demand. The unit commitment problem has been widely studied,
for over three decades. For a review of the relevant literature, we refer to [13] and the
more recent [21]. Many heuristic (e.g., genetic algorithms, tabu search, and simulated
annealing) and mathematical (e.g., integer programming, dynamic programming, and
Lagrangian relaxation) optimization methods have been introduced to solve the unit
commitment problem. Until the early 2000s, Lagrangian relaxation methods were
the dominant approach used in practice. However, mixed-integer programming im-
plementations are either currently in use or are scheduled to be adopted by all Inde-
pendent System Operators (ISOs) in the United States to solve their unit commitment
problems [9].

Security constraints – which ensure that system performance is sustained when
certain components fail – in the context of unit commitment are now a required reg-
ulatory element of power systems operations. The North American Electric Reliabil-
ity Corporation (NERC) develops and enforces standards to ensure power systems
reliability in North America. Of strongest relevance to security constraints for unit
commitment is the NERC Transmission Planning Standard (TPL-001-0.1, TPL-002-
0b, TPL-003-0b, TPL-004-0a, [18]). The TPL specifies four categories of operating
states, labeled A through D. Category A represents the baseline “normal” state, during
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which there are no system component failures. Category B represents so called N-1
contingency states, in which a single system component has failed (out of a total of
N components, including generators and transmission lines). NERC requires no loss-
of-load in both categories A and B, which collectively represent the vast majority of
observed operational states. Categories C and D of the TPL represent more extreme
states, in which multiple system components fail (near) simultaneously. Large-scale
blackouts, typically caused by cascading failures, are Category D events. Such failure
states are known as N-k contingencies in the power system literature, where k (k≥ 2)
denotes the number of component failures. In contrast to categories A and B, the
regulatory requirements for categories C and D are vaguely specified, e.g., “some”
loss of load is allowable, and it is permissible to exceed normal transmission line
capacities by unspecified amounts for brief time periods.

The computational difficulty of security-constrained unit commitment is well-
known, and is further a function of the specific TPL category that is being considered.
The unit commitment problem subject to N-1 reliability constraints is, given the spe-
cific regulatory requirements imposed for category B events of the TPL, addressed by
system operators worldwide. However, we observe that this problem is often solved
approximately in practice, specifically in the context of large-scale (ISO-scale) sys-
tems [20]. For example, a subset of contingencies based on a careful engineering
analysis is often used to obtain a computationally tractable unit commitment prob-
lem. Alternatively, the unit commitment problem can be solved without considering
contingencies, and the solution can be subsequently “screened” for validity under a
subset of contingencies (again identified by engineering analysis). Additional con-
straints can then be added to the master unit commitment problem, which is then
re-solved; the process repeats until there is no loss-of-load in the contingency states.
We raise this issue primarily to point out that even the full N-1 problem is not consid-
ered a “solved” problem in practice, such that advances (including those introduced
in this paper) in the solution of unit commitment problems subject to general N-k
reliability constraints can potentially impact the practical solution of the simpler N-1
problem variant.

Numerous researchers have introduced algorithms for solving both the security-
constrained unit commitment problem and the simpler, related problem of security-
constrained optimal power flow. In the latter, the analysis is restricted to a single time
period, and binary variables relating to generation unit status are fixed based on a
pre-computed unit commitment schedule. Reference [4] provides a recent review of
the literature on security-constrained optimal power flow. Of specific relevance to our
work is the literature on security-constrained optimal power flow in situations where
large numbers of system components fail. This literature is mostly based on worst-
case network interdiction analysis and includes solution methods based on bi-level
and mixed-integer programming (see [24,25,1,8,33,32]) and graph algorithms (see
[22,3,8,15,16]).

Following the Northeast US blackout of 2003, significant attention was focused
on developing improved solution methods for the security-constrained unit commit-
ment problem. In particular, various researchers introduced mixed-integer program-
ming and decomposition-based methods for more efficiently enforcing N-1 reliabil-
ity, e.g., see [10,11,28,17,12,19]. However, due to its computational complexity,
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security-constrained unit commitment considering the full spectrum of NERC relia-
bility standards has not attracted a comparable level of attention until very recently.
Specifically, [26] and [29] consider the case of security-constrained unit commitment
under the more general N-k reliability criterion. Similarly, [26,27] and [29] use robust
optimization methods for identifying worst-case N-k contingencies.

In this paper, we extend the N-k reliability criterion to yield the more general N-k-
ε criterion. This new criterion dictates that for all contingencies of size j ∈ {1, · · · ,k},
at least (1− ε j) fraction of the total demand must be met, with 0 ≤ ε1 ≤ ε2 ≤ ·· · ≤
εk ≤ 1. The primary motivation for introducing this variant of the N-k metric is that
it provides a practical and quantifiable bound on system performance under Category
C and D TPL contingencies, and can easily be expressed in mathematical optimiza-
tion models. We refer to the security-constrained unit commitment problem subject to
N-k-ε reliability as the contingency-constrained unit commitment (CCUC) problem.
In the CCUC, all contingencies with k or fewer system element failures (generation
units or transmission lines) are implicitly considered when checking for the feasibil-
ity of post-contingency corrective recourse. The CCUC is formulated as a large-scale
mixed-integer linear program (MILP). To solve the CCUC, we develop two decom-
position strategies: one based on a Benders decomposition [2], and another based
on cutting planes derived from the solution of power system inhibition problems [6,
7]. We then show the computational effectiveness of our algorithms on a range of
benchmark instances.

Our specific contributions, as detailed in this paper, include:

– We ensure the existence of a feasible post-contingency corrective recourse, taking
into consideration generator ramping constraints and the no-contingency (nomi-
nal) state economic dispatch;

– We consider the losses of both generation units and transmission lines;
– We propose novel decomposition methods to solve the contingency-constrained

CCUC efficiently, and show that models and methods proposed by [12], [19],
[26], [27], and [29] are all special cases of our general approach.

The remainder of this paper is organized as follows. In Section 2, we formulate
the MILP model for the contingency-constrained unit commitment problem under
the N-k-ε reliability criterion. In Section 3, two approaches based on decomposition
methods are presented for solving this large-scale MILP. In Section 4, we test our
algorithms on several IEEE test systems and a simplified model of the Western in-
terconnection. Finally, we conclude in Section 5 with a summary of our results and
directions for future research.

2 Problem Formulation

In this section, we present our mixed-integer linear programming model for the contingency-
constrained unit commitment (CCUC) problem. In Table 1, we introduce the core
sets, parameters, and decision variables of the model. The baseline unit commitment
formulation, without contingency constraints, is described in Section 2.1. We discuss
key concepts involving N-k-ε contingency analysis in Section 2.2, which are subse-
quently illustrated using an example in Section 2.3. Finally, we combine the baseline
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Table 1 Nomenclature

Sets and Indices
I Set of buses. Indexed by i for individual buses, i and j for pairs of buses.
I Number of buses. I = |I |.
G Set of generation units. Indexed by g.
G Number of generation units. G = |G |.
Gi Set of generation units located at bus i ∈I .
E Set of directed transmission lines connecting pairs of buses. Indexed by e.
E Number of directed transmission lines. E = |E |.
E.i Set of transmission lines oriented into bus i ∈I .
Ei. Set of transmission lines oriented out of bus i ∈I .

ie, je Tail bus ie and head bus je of transmission line e ∈ E .
T Set of time periods in the planning horizon. Indexed by t ∈ {1,2, · · · ,T}.

(I ,G ,E ) triple that defines a power system.
Parameters

Be, Fe Susceptance and power flow (i.e., thermal) limit of transmission line e.
Dt

i Demand (load) at bus i ∈I at time period t.
Dt = ∑

i∈I
Dt

i Total demand, across all buses, in time period t.

Pmin
g , Pmax

g Lower/upper limits on power output for generation unit g.
T d0

g , T u0
g Minimum time periods generation unit g ∈ G must be initially offline/online.

T d
g , T u

g Minimum time periods generation unit g ∈ G must remain offline/online once the unit
is shut down/started up.

Rd
g ,R

u
g Maximum ramp-down and ramp-up rate for generation unit g ∈ G between adjacent

time periods.
R̃d

g , R̃
u
g Maximum shutdown/startup ramp rates for generation unit g ∈ G for a time period

in which g is turned off/on.
Cu

g ,C
d
g Fixed startup/shutdown cost for generation unit g.

Cp
g (·) Production cost function for generation unit g.

Variables
xt

g Binary variable indicating if a generation unit g ∈ G is committed (xt
g = 1) or not

(xt
g = 0) at time t.

xt Unit commitment decision vector for all generation units at time t.
x Length G×T unit commitment decision vector.

cut
g ,cdt

g Incurred startup/shutdown cost for a generation unit g ∈ G at time t (if unit g is started
up or shut down at time t, the respective costs are Cu

g and Cd
g . Otherwise, Cu

g =Cd
g = 0.)

cu,cd Length G×T startup/shutdown cost decision vectors.
p̃t

g No-contingency state power output by generation unit g at time t.
f̃ t
e No-contingency state power flow on transmission line e at time t.

θ̃ t
i No-contingency state phase angle at bus i at time t.

p̃ Length G×T power output vector.
f̃ Length E×T power flow vector.
θ̃ Length E×T phase angle vector.

unit commitment model with N-k-ε contingency analysis in Section 2.4, to form our
contingency-constrained unit commitment model.

2.1 The Baseline Unit Commitment Model

We now present our baseline unit commitment (BUC) formulation, without contin-
gency constraints. Our formulation is based on the mixed-integer linear programming
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UC formulations introduced by [5,31,34]. We extend these formulations to capture
network transmission constraints, in the form of a DC power flow model. Our BUC
model is intended to reflect steady-state operational conditions, such that the system
is in a no-contingency state. Consequently, we require that the demand at each bus
i ∈I must be fully satisfied, i.e., no loss-of-load is allowed.

Our BUC formulation for a power system (I ,G ,E ) is given as follows:

min
x,cu,cd

∑
t∈T

∑
g∈G

(cut
g + cdt

g )+Q(x) (1a)

s.t.
T u0

g

∑
t=1

(1− xt
g) = 0 ∀g ∈ G

(1b)

T d0
g

∑
t=1

xt
g = 0 ∀g ∈ G

(1c)
t+T u

g −1

∑
t ′=t

xt ′
g ≥ T u

g (x
t
g− xt−1

g ) ∀g ∈ G , t ∈ {T u0
g +1, · · · ,T −T u

g +1}

(1d)
T

∑
t ′=t

(
xt ′

g − (xt
g− xt−1

g )
)
≥ 0 ∀g ∈ G , t ∈ {T −T u

g +2, · · · ,T}

(1e)

t+T d
g −1

∑
t ′=t

(1− xt ′
g )≥ T d

g (x
t−1
g − xt

g) ∀g ∈ G , t ∈ {T d0
g +1, · · · ,T −T d

g +1}

(1f)
T

∑
t ′=t

(
(1− xt ′

g )− (xt−1
g − xt

g)
)
≥ 0 ∀g ∈ G , t ∈ {T −T d

g +2, · · · ,T}

(1g)

cut
g ≥Cu

g(x
t
g− xt−1

g ) ∀g ∈ G , t ∈T

(1h)

cdt
g ≥Cd

g (x
t−1
g − xt

g) ∀g ∈ G , t ∈T

(1i)

cut
g ,c

dt
g ≥ 0 ∀g ∈ G , t ∈T

(1j)

xt
g ∈ {0,1} ∀g ∈ G , t ∈T

(1k)

The optimization objective (1a) is to minimize the sum of the startup costs cut
g ,

shutdown costs cdt
g , and generation cost Q(x). Constraints (1b) - (1k) include (in or-

der): initial online requirements for generation units (1b); initial offline requirements
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for generation units (1c); minimum online constraints in nominal time periods for
generation units (1d); minimum online constraints for the last T u

g time periods (1e);
minimum offline constraints in nominal time periods for generation units (1f); min-
imum offline constraints for the last T d

g time periods (1g); startup cost computation
(1h); shutdown cost computation (1i); non-negativity constraints for startup and shut-
down costs (1j); and binary constraints for the on/off status of generation units (1k).
For clarity of exposition and conciseness, we denote the set of feasible commitments
by X = {(x,cd ,cu : Constraints (1b)− (1k)}.

The minimum generation cost Q(x), given a fixed unit commitment x, is con-
strained by a combination of DC power flow constraints and unit ramping constraints,
given as follows:

Q(x) = min
f̃,p̃,θ̃

∑
g∈G

∑
t∈T

Cp
g (p̃t

g) (2a)

s.t. ∑
g∈Gi

p̃t
g + ∑

e∈E.i
f̃ t
e− ∑

e∈Ei.

f̃ t
e = Dt

i ∀i ∈I ,∀t ∈T

(2b)

Be(θ̃
t
ie − θ̃

t
je)− f̃ t

e = 0 ∀e ∈ E ∀t ∈T

(2c)

−Fe ≤ f̃ t
e ≤ Fe ∀e ∈ E ,∀t ∈T

(2d)

Pmin
g xt

g ≤ p̃t
g ≤ Pmax

g xt
g ∀g ∈ G ,∀t ∈T

(2e)

p̃t
g− p̃t−1

g ≤ Ru
gxt−1

g + R̃u
g(x

t
g− xt−1

g )+Pmax
g (1− xt

g) ∀g ∈ G ,∀t ∈T

(2f)

p̃t−1
g − p̃t

g ≤ Rd
gxt

g + R̃d
g(x

t−1
g − xt

g)+Pmax
g (1− xt−1

g ) ∀g ∈ G ,∀t ∈T

(2g)

The optimization objective (2a) is to minimize generation cost given a fixed unit
commitment x, where Cp

g (p̃t
g) is a linear approximation of generation cost for ther-

mal units, as is commonly employed. We discuss this linearization further below.
Constraints (2b)-(2g) constitute an optimal power flow formulation, and include (in
order): power balance at each bus (2b); power flow on a line, proportional to the dif-
ference in voltage phase angles at the terminal buses (2c); transmission line capacity
limits (2d); lower and upper bounds for committed generation unit output levels (2e);
and generation ramp-up/ramp-down constraints for pairs of consecutive time periods
(2f) and (2g).

By linearizing the generation cost functions, (1)-(2) provides a mixed-integer lin-
ear programming (MILP) formulation of the unit commitment problem with trans-
mission constraints, but without contingency constraints. A solution to the resulting
BUC model provides an on/off schedule for all generation units, over all time peri-
ods in the scheduling horizon. In practice, committed generation units are adjusted
on an hourly or sub-hourly basis, by ramping up or down specific units in order to
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satisfy realized demand. Further, additional fast-reaction (i.e., “peaker”) units can be
brought online if necessary. However, this process occurs on a different time scale
than the BUC, e.g., one or two hours prior to real-time execution.

Remark 1 Our BUC model most closely represents the reliability unit commitment
problem, which ISOs and vertically integrated utilities solve nightly. In contrast, the
day-ahead unit commitment problem is executed earlier in the day, and is used to clear
the market and set nodal electricity prices. While there are differences between the
two problem variants, specifically in terms of the inputs (e.g., bids driving aggregate
demand, in contrast to ISO-forecasted load), the basic BUC model can be easily re-
cast into the day-ahead variant.

Remark 2 The number of time periods that unit g has been online/offline prior to
t = 1 must satisfy T u0

g ·T d0
g = 0. That is, if a generation unit g is online prior to time

period 1, T u0
g > 0 and T d0

g = 0. Similarly, if unit g is offline before time period 1,
T u0

g = 0 and T d0
g > 0.

Remark 3 The structure of the BUC solution space is known to be degenerate, due to
the nature of the voltage phase angles θ̃ t

i . In particular, alternative optimal solutions
can be obtained by shifting all of the θ̃ t

i of a given optimal solution by a constant fac-
tor. To mitigate this degeneracy, and following common practice in the literature, we
require in our numerical experiments that the value θ̃ t

r for a pre-defined “reference”
bus r be equal to 0 for all t ∈T .

Remark 4 Generation cost curves Cp
g (pt

g) are generally specified as quadratic func-
tions of the form Cp

g (pt
g) = cp2

g (pt
g)

2 + cp1
g pt

g + cp0
g . However, because the Cp

g (pt
g)

cost curves are non-decreasing convex functions of pt
g, they can be easily approxi-

mated using a piecewise linear function (see [5]). Many researchers make a further
simplification by assuming a linear cost function, which corresponds to the not un-
common case in which a generator offers into the market with a single marginal
cost factor. We make this assumption below in our numerical experiments, specif-
ically that Cp

g (pt
g) = cp

g pt
g. The extension to the more general piecewise construct

discussed above is straightforward, and does not impact the algorithms we introduce
in Section 3. Practically, piecewise cost curves would inflate the solve times, but not
significantly.

Remark 5 Variables and constraints to capture reserve requirements are common in
the unit commitment literature, but are absent in our unit commitment models. As
noted in [12][p. 1056], “The primary purpose of spinning and non-spinning reserves
is to ensure there is enough capacity online to survive a contingency.” Hedman et al.
[12] make this argument in the context of N-1 reliabiliy; the argument for the exclu-
sion of reserve models is even stronger for N-k contingencies. Reserves, specifically
spinning reserves, also serve as proxies for explicitly dealing with uncertainty in de-
mand and variable generation (e.g., wind and solar plant) output. However, again
following [12], we argue that enforcing N-k reliability (even when k = 1) is likely to
ensure sufficient spinning reserves are online to deal with forecast errors in both de-
mand and variable generation. We demonstrate that this is indeed the case in Section
2.3 by analyzing the CCUC for a 6-bus system.
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2.2 N-k-ε Contingency Constraints for Reliability Requirements

According to the NERC TPL standard, in the event of a loss of a single component
(i.e., an N-1 contingency), a power system must remain stable and satisfy all demand.
In the case of two or more simultaneous losses (i.e., an N-k contingency with k ≥
2), the system must maintain stability. However, a pre-planned or controlled loss-
of-load is allowed. Therefore, prior to analyzing the contingency-constrained unit
commitment problem, we must augment the BUC model to ensure that any resulting
solutions can satisfy such requirements.

We consider the loss of elements in a power system (I ,G ,E ), considering both
the set G of generation units and the set E of transmission lines. The additional
parameters and the variables associated with our extension of the BUC formulation
to include N-k-ε are defined in Table 2.

Table 2 Variables and parameters N-k-ε contingency analysis

Parameters
k Maximum number of simultaneous element failures.

C ( j) Set of all contingencies with exactly j failed generation units
and/or transmission lines for j ∈ {1, · · · ,k}. Indexed by c.

|c| Size of contingency c, i.e., the number of failed elements.
C = ∪k

j=1C ( j): Set of all contingencies with k or fewer failed elements (generation
units and/or transmission lines).

C Index set of contingency set C .
dc

g ∈ {0,1} Parameter specifying whether generation unit g ∈ G is involved in
contingency c ∈C.

dc
e ∈ {0,1} Parameter specifying whether transmission line e ∈ E is involved in

contingency c ∈C.
dc ∈ {0,1}G+T Vector representing the concatenation of dc

g ∀g ∈ G and dc
e ∀e ∈ E .

ε j Parameter indicating the maximum fraction of total system load that
can be shed in a size j contingency state, for j = 1, · · · ,k.

ε Parameter vector indicating the maximum fraction of total load
that can be shed for each contingency size, i.e., ε = (ε1, · · · ,εk).

∆
j

g Multiplicative factor applied to the ramping limits of generator g ∈ G

during a size j ∈ {1, · · · ,k} contingency (∆ j
g ≥ 1).

∆
j

e Multiplicative factor applied to the power flow limits of transmission
line e ∈ E during a size j ∈ {1, · · · ,k} contingency (∆ j

e ≥ 1).
Variables

pct
g , f ct

e ,θ ct
i Corresponding values of p̃t

g, f̃ t
e , θ̃

t
i during contingency c ∈ C .

qct
i Loss-of-load during contingency c at bus i at time t.

We express the N-k contingency set C as follows:

C =
{

dc ∈ {0,1}G+E :

(
∑

g∈G
dc

g + ∑
e∈E

dc
e

)
≤ k
}
. (3)

Remark 6 The number of contingencies within the set C is given by:(
G+E

1

)
+ · · ·+

(
G+E

k

)
≤ (G+E +1)k−1.
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Practically, the number of contingencies grows so rapidly that explicit enumeration-
based approaches are almost certain to fail even for modestly-sized systems.

We assume that a given contingency c applies to all time periods t ∈ T . For ex-
ample, if a two-element contingency corresponds to the failure of elements a and b,
then these two elements are unavailable for all periods t ∈ T . We are not modeling
specific issues relating to when a contingency may occur, how long it may last, and
what corrective measures may need to be taken to restore functionality. Such issues
can significantly expand the size and difficulty of the associated unit commitment
problem, and is beyond the scope of this work. Further, generation costs are not op-
timized in post-contingency operation; following precedence in the literature, only
constraints related to power flow on the non-contingency system elements must be
enforced. In other words, the primary goal during a contingency state is operational
feasibility and not cost minimization. Additionally, multiple failure contingencies are
extreme events with correspondingly low occurrence probabilities. Therefore, consid-
eration of the production costs associated with these extreme events during operations
planning is unnecessary, and may result in prohibitively expensive operations.

Given these assumptions, we now introduce the post-contingency corrective re-
course constraints (i.e., the constraints that must be satisfied as the system state
is altered in response to a contingency event, starting from a given steady state)
R(x, p̃,dc) for a contingency prescribed by dc, under a unit commitment decision
vector x and the no-contingency state generation schedule p̃, as follows:

R(x, p̃,dc) : ∑
g∈Gi

pct
g + ∑

e∈E.i
f ct
e − ∑

e∈Ei.

f ct
e +qct

i = Dt
i ∀i ∈I ,∀t ∈T (4a)

Be(θ
ct
ie −θ

ct
je )(1−dc

e)− f ct
e = 0 ∀e ∈ E ,∀t ∈T (4b)

−Fe∆
|c|
e (1−dc

e)≤ f ct
e ≤ Fe∆

|c|
e (1−dc

e) ∀e ∈ E ,∀t ∈T (4c)
pct

g ≤ Pmax
g xt

g(1−dc
g) ∀g ∈ G ,∀t ∈T (4d)

pct
g ≤ Ru

g∆
|c|
g + p̃t

g ∀g ∈ G ,∀t ∈T (4e)

− pct
g ≤ (Rd

g∆
|c|
g − p̃t

g)(1−dc
g) ∀g ∈ G ,∀t ∈T (4f)

qct
i ≤ Dt

i ∀i ∈ I,∀t ∈T (4g)

∑
i∈I

qct
i ≤ ε|c|D

t ∀t ∈T (4h)

pct
g ≥ 0 ∀g ∈ G ,∀t ∈T (4i)

qct
i ≥ 0 ∀i ∈I ,∀t ∈T . (4j)

Constraints (4a) enforce power balance at each bus, leveraging additional loss-
of-load variables qct . Constraints (4b) enforce DC power flow on those lines that
are not part of contingency dc. Constraints (4c) enforce transmission line capacity
limits. If a line is not part of a contingency, then the power flow limit is given by
Fe∆

|c|
e ; otherwise, the power flow is constrained to equal zero. Constraints (4d) en-

force upper bounds on the power output of committed generation units not involved
in the contingency dc; otherwise, the power output is constrained to be equal to zero.
Constraints (4e) enforce generator ramp-up limits. If a generation unit is part of the
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Table 3 Generator data for the 6-bus test system

Unit Bus Prod. Start- Pmax Pmin Ramp
No. ($/MW) up ($) (MW) (MW) (MW/h)

G1 1 13.51 125 220 100 55
G2 2 32.63 249 100 10 50
G3 6 17.69 0 100 10 20
G4 1 42 50 100 0 50
G5 2 42 50 100 0 50
G6 6 42 50 100 0 50

contingency, then its corresponding power output level during the contingency is zero
(pct

g = 0) and the constraint is non-binding. Otherwise, a generator can only ramp-up
by Ru

g from its pre-contingency level. Similarly, Constraints (4f) enforce generation
ramp-down limits. If a generation unit is involved in a contingency, then (1−dc

g) = 0
and the ramp-down constraint is non-binding. Otherwise, a generator can only ramp-
down by Rd

g from its pre-contingency level. Constraints (4g) ensure that loss-of-load
at each bus does not exceed the demand at that bus. Finally, constraints (4h) ensure
that at most ε|c| fraction of the aggregate demand can be shed in a size |c| contingency.

Observe that in (4), lower limits on power output for generation units not in the
contingency are relaxed to ensure sufficient operational flexibility. These lower limits
can be easily incorporated for systems with sufficiently flexible generation units. In
addition, we implicitly assume that the on/off state of generation units not involved
in a contingency are fixed and cannot be changed via recourse variables during the
contingency. For those generation units that are not involved in the contingency, the
post-contingency power output levels pct

g are not allowed to deviate from the baseline
(pre-contingency) power output levels p̃t

g beyond the interval [p̃t
gRt

g, p̃t
g +Ru

g], given
physical ramping limitations. In other words, pct

g ∈ [p̃t
gRt

g, p̃t
g +Ru

g].
Given the post-contingency corrective recourse constraints (4), the full CCUC

formulation is given by combining formulations (1), (2), and (4).

2.3 A 6-Bus Illustrative Example

We now examine the impact of contingency constraints on optimal BUC solutions us-
ing the 6-bus test system introduced in [10]-[11]. Our goals are to concretely illustrate
(a) the often significant changes in solution structure induced by the requirement to
maintain N-k-ε in unit commitment, relative to the baseline and N-1 cases, and (b) the
redundant nature of contingency constraints, in that satisfaction of one contingency
state yields solutions that can “cover” many other contingency states. The latter prop-
erty is critical in the development of scalable algorithms for solving the CCUC, as
we discuss in Section 3. The original test system consists of 6 buses, 7 transmission
lines, and 3 generation units. We modified this instance for purposes of our analysis
as follows. We augmented the system with three additional, fast-ramping generators
G4, G5, and G6, located at buses 1, 2, and 6, respectively. This modification ensures
there is sufficient generation capacity to satisfy the N-k-ε criterion during contin-
gency states. Data for the original generator set and the three additional generators is
summarized in Table 3. Transmission line data is summarized in Table 4.
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Table 4 Transmission line data for the 6-bus test system

Line From To Be Fe
No. Bus Bus (MW)
L1 1 2 5.88 200
L2 1 4 3.88 100
L3 2 4 5.08 100
L4 5 6 7.14 100
L5 3 6 55.56 100
L6 2 3 27.03 100
L7 4 5 27.03 100
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Fig. 1 (a) Single line diagram of the modified 6-bus test system. (b) An optimal BUC solution to the 6-bus
test system, ignoring contingency constraints.

Consistent with [10]-[11], the unit shutdown cost is negligible and assumed to be
zero in our analysis. For illustrative purposes only, we consider the BUC with a single
time period, with loads of 51.2, 102.4, and 42.8 at buses 3, 4, and 5, respectively.
Runtime results for the full 24-hour instance are presented in Section 4.

A single line diagram of the 6-bus test system is shown in Figure 1(a). Generator
output bounds, transmission line capacity bounds, and loads are shown adjacent to
their corresponding system elements. When contingencies are ignored, the optimal
BUC solution commits a single unit (G1 at bus 1), generating 196.4 MW to meet the
total demand. The no-contingency economic dispatch is shown graphically in Figure
1(b).

In accordance with NERC’s TPL standard, loss-of-load is not permitted in single-
component-failure contingency states. In order for the 6-bus test system to be fully
N-1 compliant, i.e., to operate the system in such a way that there exists a post-
contingency corrective recourse action for all possible N-1 contingencies, 5 genera-
tion units must be committed, as shown in Figure 2(a). Of these, two units (G1 and
G3) provide generation capacity during the no-contingency state, while three units
(G4, G5, and G6) function as spinning reserves. Unlike the approach of explicitly
setting aside spinning reserves (e.g., equivalent to the capacity of the largest on-line
unit) via constraints, our proposed CCUC model implicitly and automatically selects
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Fig. 2 (a) An optimal BUC solution to the 6-bus test system that is fully N-1 compliant. (b) A corrective
recourse power flow after the failure of generation unit 1. (c) A corrective recourse power flow after the
failure of the transmission line connecting buses 1 and 2.

units to provide spinning reserves, by satisfying contingency constraints. Further,
in contrast to the approach of explicitly allocating spinning reserves, our proposed
CCUC model guarantees that there is adequate transmission capacity to dispatch the
generator outputs during all contingency states.

The optimal N-1-compliant BUC solution shown in Figure 2(a) represents the
system in steady state operations, i.e., under no observed contingency. Figures 2(b)
and 2(c) illustrate feasible corrective recourse power flows for single-component con-
tingency states corresponding to the failure of generation unit 1 and transmission line
1 (connecting buses 1 and 2), respectively. The total operating cost of the N-1 com-
pliant solution is approximately 6.52% higher than an optimal no-contingency BUC
solution.

The modified 6-bus system has 13 (7 transmission lines and 6 generators) possi-
ble single-component contingency states. We observe that it is sufficient to consider
only the two contingency states shown in Figure 2(b) and Figure 2(c) in order to
achieve full N-1 compliance. In other words, accounting for those two contingencies
implicitly yields feasible corrective recourse actions for the other N-1 contingency
states. As we discuss in Section 3, in most practical systems only a small number of
contingency states are likely to impact the optimal unit commitment solution. Con-
sequently, we design algorithms to screen for these critical contingencies implicitly,
without the need to consider all possible combinations of system component failures
– thus avoiding a combinatorial explosion in the number of possible contingencies.

If the maximum allowable contingency size is increased to k = 2, the optimal
BUC solution for the 6-bus test system commits four generation units, as shown in
Figure 3. In addition to including k = 2 contingencies in our analysis, we require that
loads must be fully served in the no-contingency state and that a post-contingency
corrective resource action exists for all k = 1 contingencies with no loss-of-load, per
TPL standards. For all k = 2 contingencies, the allowable loss-of-load threshold is set
to ε2 = 0.27, to ensure that there is sufficient slack to accommodate the losses of both
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Fig. 3 An optimal BUC solution to the 6-bus test system that is fully N-2-ε-compliant, with ε2 = 0.27
allowable loss-of-load factor.

transmission lines connected to bus 5. If both transmission lines connected to bus 5
fail, then the load at that bus cannot be served; the factor 0.27 corresponds to the
minimal loss-of-load under this contingency. For systems with greater redundancy
and flexibility, such as those presented Section 4, the loss-of-load threshold can be
set more conservatively (i.e., lower).

Of the four committed units, one unit (G1) is producing at maximum capacity and
three units (4, 5, and 6) are producing at levels below their maximum rating. Taken
together, these three units can provide up to 150MW of spinning reserves. Although
fewer units are committed (4 compared to 5) relative to the N-1 solution, the two least
expensive units (G1 and G2) are not committed while the three most expensive units
(G4, G5, and G6) are committed in the N-2-ε compliant solution.

We conclude with the obvious, yet critical, observation that contingency con-
straints must be considered in normal (no-contingency) unit commitment operations
in order to ensure that a feasible post-contingency corrective recourse exists for all
contingency states under consideration.

2.4 Contingency-Constrained Unit Commitment Formulation

Given the baseline unit commitment model (BUC) and associated contingency con-
straints defined respectively in Sections 2.1 and 2.2, we can now describe our full
contingency-constrained unit commitment (CCUC) problem, as follows:

CCUC : min
x∈X ∑

t∈T
∑

g∈G
(cut

g + cdt
g )+Q(x) (5)

s.t. (f,p,q,θ) ∈R(x, p̃,dc) ∀c ∈C

The resulting unit commitment decision vector x represents a minimal-cost solution
that satisfies (1) the non-contingency demands Dt

i for each bus i ∈ I for each time
period t ∈ T , (2) the generation unit ramping constraints and startup/shutdown con-
straints, and (3) the network security and DC power flow constraints for each contin-
gency, subject to loss-of-load allowances ε j. We again note that generation costs in-
curred during a contingency are not considered in the objective function. Rather, only
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power system feasibility need be maintained, subject to the loss-of-load allowances
ε j, for all j ∈ {1, · · · ,k}.

3 Solution Methods

The explicit or extensive formulation (EF) (5) of the CCUC problem is a large-scale
MILP, with an extremely large number of variables and constraints for even modest
scale power systems and small contingency budgets k. For large-scale power sys-
tems and/or non-trivial contingency budgets k, the EF formulation will quickly be-
come computationally intractable – assuming the resulting problem could be stored in
memory, which is unlikely. For example, the number of constraints associated with
feasibility checks in the CCUC (which drives the overall problem size) is approxi-
mately given as: C×T (3I +2E +4G) = O

(
T × (G+E)k× (I +G+E)

)
.

The EF formulation of the CCUC problem has a structure that is amenable to
a Benders decomposition (BD) approach, which partitions the constraints in the EF
formulation into (1) a BUC problem prescribing the unit commitment decisions and
the corresponding economic dispatch in the no-contingency state (this is commonly
referred to as the master problem in BD), and (2) subproblems corresponding to feasi-
bility checks, for each combination of contingency state c∈C and time period t ∈T .
The BD algorithm iterates between solving the mixed-integer master problem (BUC),
which prescribes the lowest cost unit commitment and economic dispatch, and the
linear subproblems, until an optimal solution with a feasible post-contingency cor-
rective recourse for all contingency states is obtained. In the following sub-section,
we describe our Benders decomposition method, as it is applied to CCUC.

3.1 A Benders Decomposition Approach

We begin by observing that given a time period t, a unit commitment decision xt ,
and the no-contingency generation schedule p̃t , feasibility under contingency state c
with component failures defined by dc is contingent on satisfying the corresponding
standard DC power flow constraints. We refer to this problem as the contingency
feasibility problem, which we denote CF(xt , p̃t ,dc). For conciseness of notation, we
eliminate the superscript “ct” from the f ct

e , pct
g ,q

ct
i , and θ ct

i decision variables. The
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CF(xt , p̃t ,dc) constraint set is defined as follows:

(α) ∑
g∈Gi

pg + ∑
e∈E.i

fe− ∑
e∈Ei.

fe +qi = Dt
i ∀i ∈I (6a)

(β ) Be(θie −θ je)(1−dc
e)− fe = 0 ∀e ∈ E (6b)

(δ̂ ) fe ≤ Fe∆
|c|
e (1−dc

e) ∀e ∈ E (6c)

(δ̌ ) − fe ≤ Fe∆
|c|
e (1−dc

e) ∀e ∈ E (6d)
(γ) pg ≤ Pmax

g xt
g(1−dc

g) ∀g ∈ G (6e)

(λ̂ ) pg ≤ Ru
g∆
|c|
g + p̃t

g ∀g ∈ G (6f)

(λ̌ ) − pg ≤ (Rd
g∆
|c|
g − p̃t

g)(1−dc
g) ∀g ∈ G (6g)

(ζ ) qi ≤ Dt
i ∀i ∈I (6h)

(π) ∑
i∈I

qi ≤ ε|c|D
t (6i)

pg,qi ≥ 0 ∀g ∈ G , i ∈I . (6j)

Using the dual variables associated with each constraint set in (6a)-(6i), we ob-
serve (following from strong duality in linear programming) that (xt , p̃t ,dc) is feasi-
ble if and only if the following dual problem DCF(xt , p̃t ,dc) is bounded:

max
α,β ,δ̂ ,δ̌ ,γ,λ̂ ,λ̌ ,ζ ,π

∑
i∈I

Dt
i(αi +ζi)+ ∑

e∈E
Fe∆

|c|
e (1−dc

e)(δ̌e + δ̂e)+ ∑
g∈G

Pmax
g xt

g(1−dc
g)γg

(7a)

+ ∑
g∈G

(
(Ru

g∆
|c|
g + p̃t

g)λ̂g +(Rd
g∆
|c|
g − p̃t

g)(1−dc
g)λ̌g + ε|c|D

t
π

)
s.t. αie −α je −βe− δ̌e + δ̂e = 0 ∀e ∈ E (7b)

αig + γg + λ̂g− λ̌g ≤ 0 ∀g ∈ G (7c)

αi +ζi ≤ 0 ∀i ∈I (7d)

∑
e∈Ei.

Be(1−dc
e)βe− ∑

e∈E.i
Be(1−dc

e)βe = 0 ∀i ∈I (7e)

δ̂ , δ̌ ,γ, λ̂ , λ̌ ,ζ ,π ≤ 0 (7f)

Note that the feasible domain for DCF(xt , p̃t ,dc) is a polyhedral cone and any
solution in the domain is a ray. By Minkowski’s theorem, every such ray can be
expressed as a non-negative linear combination of the extreme rays of the domain.
Therefore, the dual problem DCF(xt , p̃t ,dc) is bounded if and only if its optimal
objective value is less than or equal to zero. This condition holds if and only if:

∑
i∈I

Dt
i(αi +ζi)+ ∑

e∈E
Fe∆

|c|
e (1−dc

e)(δ̌e + δ̂e)+ ∑
g∈G

Pmax
g xt

g(1−dc
g)γg (8)

+ ∑
g∈G

(
(Ru

g∆
|c|
g + p̃t

g)λ̂g +(Rd
g∆
|c|
g − p̃t

g)(1−dc
g)λ̌g + ε|c|D

t
π

)
≤ 0.
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We call these constraints Benders feasibility cuts or f -cuts. Below, we summarize
our Benders decomposition algorithm as applied to the CCUC, where BUC` denotes
the BUC formulation – in addition to any added f -cuts – at iteration ` of the algo-
rithm:

Algorithm 1 Benders Decomposition Algorithm (BD)
1: Initialization: let `← 1
2: Solve BUC`

3: if BUC` is infeasible, CCUC has no feasible solution, EXIT
4: else, let (x`, p̃`) be an optimal solution of BUC`

5: for each c ∈C, t ∈T :
6: solve CF(xt

`, p̃
t
`,d

c) and let w∗ be the optimal objective value
7: if w∗ is unbounded then add f -cut (8) to BUC`

8: end if
9: end for

10: if f -cut(s) are added in Step 7, let `← `+1 and go to Step 2
11: else, (x`, p̃t

`) is an optimal solution - EXIT
12: end if
13: end if

3.2 A Cutting Plane Method Based on the Power System Inhibition Problem

Even with a BD approach, solution of the CCUC is likely to be intractable for re-
alistically sized power systems due to the number of feasibility checks that must be
performed, one for each contingency c ∈C and time period t ∈T .

In this sub-section, we describe a cutting plane algorithm that uses a bi-level sep-
aration problem to implicitly identify a contingency state that would result in the
worst-case loss-of-load for each contingency size j, j ∈ {1, · · · ,k}. If the worst-case
generation shedding is non-zero and/or loss-of-load is above the given contingency
load-shedding budget ε j, then the current solution is infeasible. When such an infea-
sibility is detected, we generate a cutting plane (constraint) corresponding to f -cut
(8), which is then added to the BUC master problem to protect against this particular
contingency state.

3.2.1 The Bi-Level Power System Inhibition Problem

Given a time period t ∈ T , a contingency budget j ∈ {1, · · · ,k}, a unit commitment
xt , and the no-contingency generation levels p̃t , we solve a bi-level power system in-
hibition problem (PSIP), to determine the worst-case generation/load shedding under
a contingency with exactly j failed elements. In the context of the PSIP, the contin-
gency vector d is no longer a parameter but a vector of upper-level decision variables.
In the PSIP, the upper-level decisions (i.e., d) correspond to binary contingency se-
lection decisions and the lower level decisions (i.e., f,p,q,r,s,θ ) correspond to the
recourse generation schedule and DC power flow under the state prescribed by the
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the unit commitment decisions xt , the no-contingency state economic dispatch (p̃t),
and the upper-level contingency selection variables (d).

Before we introduce the PSIP, we augment the previously introduced DC power
flow constraints as follows. We introduce two sets of non-negative, continuous vari-
ables corresponding to generation shedding rg for all g ∈ G and loss-of-load at each
bus qi for all i∈I , and a single auxiliary variable s corresponding to the total system
loss-of-load above the allowable threshold ε jDt . In conjunction with associated con-
straints introduced below, these variables ensure that the PSIP has a feasible recourse
power flow for any unit commitment xt , no-contingency state economic dispatch p̃t ,
and upper-level contingency selection decisions d. We now formally state the PSIP,
as follows (the “B” prefix below denotes “bi-level”):

B-PSIP(xt , p̃t , j) :

max
d

min
f,p,q,r,s,θ ∑

g∈G
rg + s (9a)

s.t. ∑
e∈E

de + ∑
g∈G

dg = j (9b)

∑
g∈Gi

(pg− rg)+ ∑
e∈E.i

fe− ∑
e∈Ei.

fe +qi = Dt
i ∀i ∈I (9c)

Be(θie −θ je)(1−de)− fe = 0 ∀e ∈ E
(9d)

− fe ≤ Fe∆
j

e (1−de) ∀e ∈ E (9e)

fe ≤ Fe∆
j

e (1−de) ∀e ∈ E (9f)
pg ≤ Pmax

g xt
g(1−dg) ∀g ∈ G

(9g)

pg ≤ Ru
g∆

j
g + p̃t

g ∀g ∈ G

(9h)

− pg ≤ Rd
g∆

j
g − p̃t

g(1−dg) ∀g ∈ G (9i)

qi ≤ Dt
i ∀i ∈I (9j)

rg− pg ≤ 0 ∀i ∈I
(9k)

∑
i∈I

qi− s≤ ε jDt (9l)

pg ≥ 0, qi ≥ 0, rg ≥ 0, s≥ 0 ∀i ∈I ,g ∈ G
(9m)

de ∈ {0,1}, dg ∈ {0,1} ∀e ∈ E ,∀g ∈ G .
(9n)

The bi-level objective (9a) seeks to maximize the minimum sum of (a) generation
shedding and (b) loss-of-load quantity above the allowable threshold. Because both
rg for all g ∈ G and s are non-negative variables, the objective value is bounded
from below by zero. If the objective value is equal to zero, the solution (xt , p̃t) has
a feasible corrective recourse for all contingencies of size j. Otherwise, the solution
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cannot survive the contingency prescribed by the upper-level contingency selection
variables d. Given a contingency state defined by d, the objective of the power system
operator (the inner minimization problem) is to find a corrective recourse power flow
such that the sum of generation shedding and the loss-of-load quantity above the
allowable threshold is minimized. Constraint (9b) enforces the budget on the number
of power system elements in the selected contingency state. Constraints (9c) enforce
power balance at each bus, with additional generation shedding variables rg ∈ G for
each generator located at a bus and a bus load-shedding variable qi ∈ I to ensure
system feasibility. Constraints (9d)-(9j) are as stated in formulation (4). Constraints
(9k) restrict the amount of generation shedding to be at most the generation output for
each generator g ∈ G . Constraint (9l) defines the amount of load shedding above the
allowable threshold. If ∑i∈I qi > ε|c|Dt then s = ∑i∈I qi− ε|c|Dt ; otherwise, s = 0.

Remark 7 Observe that Constraints (9d) are nonlinear, due to the presence of terms
that are products of binary contingency-selection (upper level) variables and contin-
uous voltage phase angles (lower level) variables. Thus, the B-SIP formulation is a
bi-level, mixed-integer, non-linear program.

Remark 8 Observe that B-PSIP is feasible for any first-stage solution (xt , p̃t) and any
contingency prescribed by d; the solution f = 0,pt = rt = p̃t ,qt = Dt , s = (1− ε j)Dt

and θ = 0 is feasible under any contingency state.

Bi-level programs such as formulation (9) cannot in general be solved directly.
Consequently, we next describe a reformulation strategy to derive a mixed-integer
linear programming equivalent of the B-PSIP model. If the upper-level variables d
are temporarily fixed, the inner minimization problem reduces to a linear program. By
strong duality in linear programming, we can replace the inner minimization problem
with its dual maximization problem. Subsequently releasing the temporarily fixed up-
per level variables d will yield a single-level, bi-linear program with bi-linear terms in
the objective function. In the resulting reformulation, there are five nonlinear terms,
specifically products of a binary contingency selection variable (de,dg) and a con-
tinuous dual variable (β , δ̂ , δ̌ ,γ, λ̌ ). Each of these non-linear terms can be linearized
using the following strategy.

Let u and v denote two continuous variables and let b denote a binary variable.
The bi-linear term (1− b)u can then be linearized as follows. Letting v = (1− b)u,
we introduce the following constraints to linearize the bi-linear term (1−b)u:

u−Ub ≤ v ≤ u+Ub (10a)
−U(1−b) ≤ v ≤ U(1−b) (10b)

Here, the parameter U represents an upper bound for continuous variable u that ad-
ditionally satisfies U ≥ |u|. Case analysis of these constraints for both values of b
demonstrates that they provide a linearization of the associated bi-linear term. If
b = 1, then Constraint (10b) implies that v = 0. With v = 0, Constraint (10a) implies
that −U ≤ u ≤ U , which is never binding. If b = 0, then Constraint (10a) implies
u = v and Constraint (10b) implies −U ≤ v≤U ; the latter is never binding.
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Remark 9 If the bi-linear term is a product of a binary variable b and a non-positive
variable u, i.e. u ≤ 0, the lower bound in Constraint (10b) is redundant, and can
therefore be eliminated. Analogously, if u is a non-negative variable, i.e. u ≥ 0, the
upper bound in Constraint (10b) is redundant, and can be eliminated.

We follow the above strategy to linearize all five bi-linear terms (involving β , δ̂ ,
δ̌ , γ , and λ̌ ). First, we define the continuous variables r1, r2, r3, r4, and r5, and let
r1

e = (1−de)βe, r2
e = (1−de)δ̂e, r3

e = (1−de)δ̌e, r4
g = (1−dg)γg, and r5

g = (1−dg)λ̌g.
For completeness, we present the full mixed-integer linear reformulation of the B-
PSIP formulation, as follows:

max
d,α,β ,δ̂ ,δ̌ ,γ,λ̂ ,λ̌ ,ζ ,π

∑
i∈I

Dt
i(αi +ζi)+ ∑

e∈E
Fe∆

j
e (r

2
e + r3

e)+ ∑
g∈G

Pmax
g xt

gr4
gγg (11a)

+ ∑
g∈G

(
(Ru

g∆
j

g + p̃t
g)λ̂g +(Rd

g∆
j

g − p̃t
g)r

5
g + ε jDt

π

)
s.t. ∑

e∈E
de + ∑

g∈G
dg = j (11b)

αie −α je −βe− δ̌e + δ̂e = 0 ∀e ∈ E (11c)

αig + γg + λ̂g− λ̌g ≤ 0 ∀g ∈ G (11d)

αi +ζi ≤ 0 ∀i ∈I (11e)
−αig +ηg ≤ 1 ∀g ∈ G (11f)

−π ≤ 1 (11g)

∑
e∈Ei.

Ber1
e − ∑

e∈E.i
Ber1

e = 0 ∀i ∈I (11h)

r1
e ≥max{βe−Ude,−U(1−de)} ∀e ∈ E (11i)

r1
e ≤min{βe +Ude,U(1−de)} ∀e ∈ E (11j)

r2
e ≥max{δ̂e−Ude,−U(1−de)} ∀e ∈ E (11k)

r2
e ≤ δ̂e +Ude ∀e ∈ E (11l)

r3
e ≥max{δ̌e−Ude,−U(1−de)} ∀e ∈ E (11m)

r3
e ≤ δ̌e +Ude ∀e ∈ E (11n)

r4
g ≥max{γg−Udg,−U(1−dg)} ∀g ∈ G (11o)

r4
g ≤ γg +Udg ∀g ∈ G (11p)

r5
g ≥max{λ̌ −Udg,−U(1−dg)} ∀g ∈ G (11q)

r5
g ≤ λ̌ +Udg ∀g ∈ G (11r)

δ̂ , δ̌ ,γ, λ̂ , λ̌ ,ζ ,π ≤ 0 (11s)

Next, we outline an algorithm for optimally solving the CCUC problem that com-
bines a Benders decomposition approach with the aid of an oracle given by formu-
lation (11), which acts as a separation problem. A given solution (xt , p̃t) to the BUC
is feasible with respect to j if the oracle cannot find a contingency of size j that
results in a loss-of-load above the allowable threshold, i.e., if the optimal objective
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value is zero. For each contingency budget j ∈ {1, · · · ,k}, we can check for the worst-
case j-element contingency by solving formulation (11) using a failure budget of j.
Whenever the oracle determines that the current solution is not N-k-ε compliant, it
returns a contingency state prescribed by d. This state results in generation shedding
and/or loss-of-load above the allowable threshold ε jDt for j-element failures.

3.2.2 Contingency Screening Algorithms

We now present our cutting plane algorithm, referred to as the Contingency Screening
Algorithm 1 (CSA1), to solve the CCUC problem implicitly by screening for worst-
case contingencies.

Algorithm 2 Contingency Screening Algorithm 1 (CSA1)
1: Initialization: let `← 1
2: Solve BUC`

3: if BUC` is infeasible, CCUC has no feasible solution; EXIT
4: else, let (x`, p̃`) be an optimal solution of BUC`

5: for all j ∈ {1, · · · ,k}, t ∈T :
6: solve PSIP(xt

`, p̃
t
`, j) and let w∗ be the optimal objective value

7: if w∗ > 0,
8: Add f -cut (8) to BUC`

9: end if
10: end for
11: if f -cut(s) added in Step 8, let `← `+1 and return to Step 2
12: else, (x`, p̃`) is an optimal N-k-ε compliant solution; EXIT
13: end if
14: end if

Remark 10 By employing algorithm CSA1, we have essentially recast the CCUC
problem as a trilevel optimization problem. For related developments in tri-level
power grid optimization, we defer to [32].

3.2.3 Contingency Sharing Using a Dynamic Contingency List

In preliminary testing using CSA1, we found that run time is significantly impacted
by the need to solve a large number of PSIP instances at each master iteration of the
algorithm. Specifically, we solve one instance of the PSIP for each maximum contin-
gency budget and time period pair ( j, t), for each master iteration of the algorithm.
The solution time of PSIP, as expected, is heavily impacted by the size of the power
system (I ,G ,E ). Figure 4 shows the solution time (on a logarithmic scale) of the
PSIP for various power system sizes and maximum contingency budgets k.

Based on our experience solving the CCUC problem using CSA1, we now make
three observations regarding its behavior. First, the majority of the the total run time
was spent solving PSIP instances. Second, a contingency c that fails the system in
one time period t often fails the system in other time periods, suggesting that shar-
ing of contingencies across time periods may be an effective mechanism to reduce
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Fig. 4 Average run times (in seconds) of PSIP solves for varies power systems and contingency budgets
(k = 1,2,3).

run times. Third, in the final solution only a small number of contingencies are ac-
tually identified. In other words, it is often prudent to consider a small number of
contingencies explicitly when solving the CCUC problem. Based on these observa-
tions, we found that it is most efficient to develop a version of our CSA algorithm
that minimizes the number times we solve PSIP instances and allows for sharing of
contingencies across time periods. We achieve this by using a dynamic contingency
list.

We begin with an empty contingency list L. At each master iteration, we first
screen all contingencies in the list for each time period t ∈T . For each time period t,
we generate feasibility cuts (8) for each violated contingency in the list. If none of the
contingencies in the list yields violations in any time period t, we proceed to solving
PSIP instances to identify a new violated contingency. This simple procedure ensures
that each violated contingency identified by solving PSIP is never redundant, i.e., the
new contingency is not in our existing contingency list. When a new contingency is
identified, we add it to the contingency list and check for its violation in all other time
periods by solving a DC power flow problem.

Our computational results indicate that this procedure results in fewer total PSIP
instances solved on average, which results in faster run times. The key idea behind
this procedure is to avoid PSIP solves associated with re-identifying violated contin-
gencies. We refer to this algorithm as the Contingency Screening Algorithm 2 (CSA2).

4 Computational Experiments

We implemented our proposed models and algorithms in C++ using IBM’s Concert
Technology Library 2.9 and the CPLEX 12.1 MILP solver. All experiments were
performed on a workstation with two quad-core, hyper-threaded 2.93GHz Intel Xeon
processors with 96GB of memory. This yields a total of 16 threads allocated to each
(mixed-integer) invocation of CPLEX. The default behavior of CPLEX 12.1 is to
allocate a number of threads equal to the number of machine cores. In the case of
hyper-threaded architectures, each core is presented as a virtual dual core – although
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Algorithm 3 Contingency Screening Algorithm 2 (CSA2)
1: Initialization: let `← 1, L= /0
2: Solve BUC`

3: if BUC` is infeasible, CCUC has no feasible solution; EXIT
4: else, let (x`, p̃`) be an optimal solution of BUC`

5: for each c ∈L , t ∈T :
6: solve CF(xt

`, p̃
t
`,d

c) and let w∗ be the optimal objective value
7: if w∗ > 0,
8: Add f -cut (8) to BUC`

9: end if
10: end for
11: if f -cut(s) added in Step 8
12: let `← `+1, return to Step 2
13: end if
14: for all j ∈ {1, · · · ,k}, t ∈T :
15: solve PSIP(xt

`, p̃
t
`, j) and let z∗ be the optimal objective value

16: if z∗ > 0, add f -cut (8) to BUC`

17: let `← `+1, L← L∪{c}, and return to Step 2
18: end if
19: end for
20: end if
21: (x`, p̃`) is an optimal N-k-ε compliant solution, EXIT

it is important to note that the performance is not equivalent to a true dual core.
This workstation is shared by other users, such that our run time results should be
interpreted as conservative. With the exception of the optimality gap, which we set to
0.1%, we used the default CPLEX settings for all other parameters. All runs of all of
our algorithms were allocated a maximum of 10,800 seconds (3 hours) of wall clock
time.

We executed our models and algorithms on five test systems of varying size: the
6-bus, IEEE 24-bus, RTS-96, and IEEE 118-bus test systems [14], and a simplified
model of the US Western interconnection (WECC-240) [23]. The 6-bus system – as
described in Section 2.3 – is further augmented with three fast ramping generation
units located at bus 1, 2, and 6, respectively, to ensure there is sufficient generation
capacity to respond to larger-size contingencies. Generator data for these three units
are identical to G4–G6 in Table 3. To ensure there is sufficient operational flexibil-
ity in the WECC-240 system, we constrained transmission lines and one generation
unit to be immune to failures. These nine elements include those serial lines, pairs
of transmission lines, and generation unit and transmission line pairs whose failure
would result in islanding of subsystems (buses). Additionally, we assume that non-
dispatchable generation injections into the system can be shed during contingency
states. For each test system, we consider a 24 hour planning horizon and the four
contingency budgets k = 0,1,2, and 3, yielding a total of 20 instances.

We first consider the run times for our three different algorithms for solving the
CCUC problem: the extensive form MILP, Benders decomposition, and the Contin-
gency Screening Algorithm 2 (CSA2). The results are presented in Table 5. All times
are reported in wall clock (elapsed) seconds. The column labeled “C” reports the
number of distinct contingencies for a given budget k, while the column labeled “εk”
reports the fraction of total load (demand) that can be shed. Entries in Table 5 report-
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Table 5 Run times for different solution approaches to the CCUC problem

Solution time
(exit status or feasibility gap)

Test System C k εk EF BD CSA2
6-bus 0 0 0 0 0 0

16 1 0 3 2 1
136 2 0.29 7 16 2
696 3 0.77 134 189 4

IEEE 24-bus 0 0 0 0 1 0
70 1 0 108 58 11

2,485 2 0.08 x(LPR) 3,861 101
57,225 3 0.21 x(OM) x(0.03) 397

RTS-96 0 0 0 1 2 2
216 1 0 x(LPR) 303 41

23,436 2 0.05 x(OM) 8,139 4,04
1,679,796 3 0.09 x(OM) x(0.050) 4,989

IEEE 118-bus 0 0 0 1 1 1
240 1 0.01 x(LPR) 3,513 352

28,920 2 0.12 x(OM) x(0.204) 1,232
2,304,200 3 0.25 x(OM) x(0.249) 8,586

WECC-240 0 0 0 1 2 2
424 1 0 x(LPR) 262 108

90,100 2 0.06 x(OM) x(0.004) 2,484
12,704,524 3 0.15 x(OM) x(0.004) x(0)

ing “x” indicate that the corresponding algorithm failed to locate an N-k-ε compliant
solution within the 0.1% optimality gap within the 3 hour time limit. For those in-
stances that could not be solved within the allocated time, we provide exit status or
feasibility gaps, indicating the maximum fraction of total demand shed above the
allowable threshold εk in the final solution. In all runs of the CSA2 algorithm, we
initialize the contingency list L to the empty list.

As expected, the extensive form approach (EF) can only solve the smallest in-
stances: for each contingency, a full set of DC power flow constraints must be ex-
plicitly embedded in the formulation. As the number of contingencies grows, this
formulation quickly becomes intractable. The exit statuses “LPR” and “OM” repre-
sent “solving Linear Programming Relaxation at root node” and “Out of Memory,”
respectively. Note that our test instances only represent small to at most moderately
sized systems relative to real power systems (which can contain on the order of thou-
sands to tens of thousands of elements), indicating that even significant advances in
solver technology are unlikely to mitigate this issue. Further, even given significant
algorithmic advances, the memory requirements associated with the EF will likely
cause the intractability to persist.

The BD approach attempts to address the exponential growth in the number of
contingencies via delayed cut generation. However, although the BD approach does
not explicitly incorporate DC power flow constraints for each contingency into the
formulation, those power flow constraints must still be solved to identify violated
feasibility cuts (which are then added to the master problem). In summary, the BD
approach mitigates the memory issues associated with the EF approach, but the cost
of identifying feasibility violations for a rapidly growing number of contingencies
remains prohibitive. Overall, the BD approach can solve larger instances than the EF
approach, but still fails given larger k and larger test instances.
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Finally, we consider the performance of our third approach: CSA2. Here, we see
that all of our test instances, with the sole exception of the WECC-240 system with
k = 3, can be solved within the 3 hour time limit. This result is enabled by the com-
bination of using a dynamic contingency list (significantly reducing the number of
PSIP solves) and the fact that we are able to implicitly evaluate all the contingencies
in order to identify a violated contingency, and then quickly find a corresponding
feasibility cut by solving a single linear program modeling DC power flow. These
features of the CSA2 algorithm allow it to partially mitigate the impact of massive
number of contingencies and the associated impact on run times and memory require-
ments. Lastly, we note that although CPA2 failed to solve the WECC-240 system with
k = 3 within the allocate time, the final solution at the three hour mark is in fact a
N-k-ε compliant solution. For large power systems and/or contingency budgets, sig-
nificant computational time is required to “prove” feasibility. Eliminating the three
hour time limit, we observed that the WECC-240 system with k = 3 could be solved
in approximately 18 hours, with the majority of this time taken to prove feasibility of
the final solution.

We next examine the run times of our CSA2 algorithm in further detail, as re-
ported in Table 6. For each instance, we report the total number of possible contin-
gency states C and the number of contingencies for which corresponding feasibility
cuts were actually generated. The latter corresponds to the final size of the dynamic
contingency list, which is reported in the column labeled “|L|.” Clearly, |L| cor-
responds to a vanishingly small fraction of the possible number of contingencies,
which is critical to the tractability of the approach. The remaining columns of Table
6 break down the total run time (in wall clock seconds) by the three main compo-
nents of the algorithm – the RMP (Restricted Master Problem), which identifies unit
commitments; the power system inhibition problem (PSIP), which identifies a con-
tingency that has no feasible corrective recourse power flow given the current RMP
UC decisions and no-contingency economic dispatch; and the contingency feasibility
subproblems, which yield the feasibility cuts. The final column, labeled “cuts,” re-
ports the total number of feasibility cuts generated in solving the instance. It is clear
from Table 6 that the computational bottleneck in the CSA2 algorithm is the solu-
tion of the PSIP, such that any improvements to that process will yield immediate
reductions in CSA2 run times.

5 Conclusions

We have investigated the problem of scheduling generation units in power system
operations, and determining a corresponding no-contingency state unit commitment
and economic dispatch, such that the resulting solution satisfies the N-k-ε reliability
criterion. This reliability criterion is a generalization of the well-known N-k crite-
rion, and requires that at least (1− ε j) fraction of the total demand is met following
the failure of j system components, for j ∈ {1, · · · ,k}. We refer to this problem as
the contingency-constrained unit commitment problem, or CCUC. We proposed two
algorithms to solve the CCUC: one based on the Benders decomposition approach,
and another based on contingency screening algorithms. The latter method avoids a
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Table 6 Run time breakout for the CSA2 algorithm

Test Systems C k εk RMP PSIP DCF itr |L| cuts
6-bus 0 0 0 0 0 0 1 0 0

16 1 0 0 1 0 2 1 21
136 2 0.29 0 2 0 7 3 48
696 3 0.77 0 4 0 11 4 89

IEEE 24-bus 0 0 0 0 0 0 1 0 0
70 1 0 6 46 1 185 1 185

2,485 2 0.08 26 69 6 857 3 857
57,225 3 0.21 64 324 9 928 4 928

RTS-96 0 0 0 2 0 0 1 0 0
216 1 0 13 25 3 12 3 27

23,436 2 0.05 17 385 2 15 4 33
1,679,796 3 0.09 19 4,965 5 17 5 38

IEEE 118-bus 0 0 0 1 0 0 1 0 0
240 1 0.01 243 72 37 85 5 1,305

28,920 2 0.12 377 796 59 120 7 1,671
2,304,200 3 0.25 405 8,114 67 132 9 1,743

WECC 240-bus 0 0 0 0 0 0 1 0 0
424 1 0 4 102 2 5 2 48

90,100 2 0.06 3 2,479 2 5 2 48
12,704,524 3 0.15 x x x x x x

combinatorial explosion in the number of contingencies by seeking vulnerabilities in
the current solution, and generating valid inequalities to exclude such infeasible so-
lutions in the master problem. We tested our proposed algorithms on test systems of
varying sizes. Computational results show that our proposed Contingency Screening
Algorithm (CSA2), which uses a bi-level separation program to implicitly consider
all contingencies and a dynamic contingency list to avoid re-identification of con-
tingencies, significantly outperforms the Benders decomposition approach. We were
able to solve all test systems, with the exception of the largest WECC-240 instance,
in under 3 hours. In contrast, both the Benders decomposition approach and direct
solution of the CCUC extensive form fail to yield convergence on all but the smallest
instances within 3 hours.

We believe that this paper will provide a significant basis for subsequent research
in contingency-constrained unit commitment. For example, we are working to ap-
ply these methods to full-scale systems. While our results are promising in terms
of scalability, full-scale problems pose more significant computational challenges,
and consequently will require stronger formulations for the power system inhibition
problem and possible adoption of high-performance computing resources. Further,
our current CCUC model assumes all component failures occur simultaneously. In
order to reflect practical operational situations, where failures may happen consecu-
tively, new CCUC models that consider time lags between system component failures
are needed. We plan to extend our CCUC models to include these cases. Finally, we
have worked exclusively with a deterministic CCUC model to date. However, it is
ultimately essential to incorporate uncertainty in our unit commitment models, e.g.,
to account for uncertain demand and renewable generation units. We believe our cur-
rent cutting plane framework can be naturally extended to robust optimization and
stochastic programming formulations via a nested decomposition approach.
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